Serving Size: 4 Veggie Capsules | ||
Servings Per Container: 100 | ||
Amount Per Serving | % DV * | |
Chromium (as chromium nicotinate glycinate chelate) | 300mcg | |
Agmatine Sulfate 1, | 000mg | |
Berbine HCL (from Phellodendron) (Phellodendron amurense Rupr.)(Bark) | 500mg | |
Bitter Melon Extract (Momordica Charantia)(Fruit) (10:1) | 500mg | |
Banaba Leaf Extract (Lagerstroemia Speciosa) (Stnd. to 2% Corsolic Acid) | 300mg | |
Gymnema Sylvestre Extract (leaf) (std. to 25% Gymnemic Acids) | 300mg | |
Alpha Lipoic Acid | 150mg | |
Na-R-Alpha Lipoic Acid | 100mg | |
Saffron (Crocus Sativus) (Stigmas) | 30mg | |
Biperine | 10mg | |
* % Daily Value (DV) is based on a 2,000 calorie diet. Your daily values may be higher or lower based on your calorie needs.
† Daily Value (DV) not established. |
||
Directions: As a dietary supplement, take 2 to 4 capsules per day. Take 2 capsules up to twice daily, 15 to 30 minutes prior to your pre-training mean and/or other meals containing at least 30 to 100 grams of carbohydrates OR take 4 capsules once per day 15 to 30 minutes prior to your pre-training meal containing at least 50 to 100 grams of carbohydrates or 15 to 30 minutes before your heaviest carbohydrate containing meal of the day. To assess tolerance, start with 1 capsule per dose. Do not exceed 4 capsules per day. |
||
Warnings: This product is intended for healthy adults over 18 years of age. Do not use this product if you are pregnant or nursing. Consult your physician before using this or any dietary supplement, especially if you are taking any medication or suffer from any health condition(s). Keep stored in a cool, dry place away from children and animals. |
Articles on SNS Glycophase:
-
Aug 08, 2018 SNS GlycoPhase Turns Carbs into Gym-Smashing Pumps
SNS GlycoPhase may have just set the bar for glucose disposal agents / nutrient partitioners with some of the doses in here! Meant for pre workout!
The new 2018 formula of GlycoPhase is here, and it looks like it's playing for keeps against the carbs!
Serving Size: 4 Veggie Capsules
Servings Per Container: 30
- Chromium 300mcg
- Agmatine sulfate 1000mg
- Berberine HCI 500mg
- Bitter melon extract 500mg
- Banaba leaf extract 300mg
- Gymnema syvestre extract 300mg
- Alpha lipoic acid 150mg
- Na-r-alpha lipoic acid 100mg
- Saffron 30mg
- Bioperine 10mg
Agmatine Sulfate:
Agmatine Sulfate is one of the few ingredients that has been shown to have the capability to increase GLUT-4 transportation and mRNA expression in skeletal muscle, making it a prime ingredient to help ensure that glucose transport to muscle cells is favored over fat cells (10). It achieves this through an indirect action on beta-endorphin secretion which, in much the same mechanism as exercise, promotes glut-4 translocation into skeletal muscle through activation of imidazoline I2A receptors. (10, 18)
Berberine HCI:
Berberine HCI is one of the most effective ingredients currently available for the purpose of reducing blood sugar. While Berberine's exact method of action is still currently under investigation, it is purported that its ability to activate AMPK is a driver for the regulation of carbohydrate through AMPK's ability to promote glycogen synthesis and increase glucose uptake in insulin sensitive cells, thus removing glucose from the blood faster for immediate oxidization or stored as glycogen for later use as fuel. (19, 20)
Also, due to AMPK's ability to promote insulin sensitivity and glucose uptake in a method independent of insulin itself, Berberine may have the capability to promote glucose uptake in cells that have become insulin resistant, thereby effectively clearing the blood of glucose in even the most difficult of environments. (19)
Bitter Melon:
Bitter Melon has several active constituents that promote glucose from clearing the blood, with these being charantin, vicine, and polypeptide-p.(13,14) Each one of these exerts their hypoglycemic effect via different physiological modes of action, ranging from stimulation of skeletal muscle utilization to preservation islet B cells (cells integral to proper insulin functioning) thus governing most of the process that underpins blood glucose clearing and helps preserve the integrity of the process. (7, 12)
Of importance is the role of protecting Islet B cell health, whereby destruction of these cells results in a lack of insulin production. Bitter Melon protects against this down-regulating the cytokines responsible for islet cell death, namely interleukin-6, tumor necrosis factor a, and nuclear factor kappa b. While the likelihood of this occurring is low, protection against it may be worthwhile as the effects are detrimental to overall health and longevity. (12)
Banaba Leaf:
Banaba leaf, most notably its primary active ingredient, Corsolic Acid, has been reported to decrease blood sugar levels within 60 minutes in human subjects through its ability to increase cellular uptake of glucose. However it isn't just its ability to reduce blood glucose that is of value, it is also its ability to assist with weight loss. In a study that tested a combination of Banaba, Bitter Melon, Gymnema, and Bioperine on weight loss, subjects lost an average of 6 kilograms over a 12 week period. (13)
In various other human trials, Banaba extracted for Corsolic Acid has been noted to decrease blood glucose by up to 30% in a matter of hours, even when compared to placebo. Its proposed mode of action lies within its ability to stimulate Glut 4 translocation and induce insulin receptor phosphorylation, both of which promote the clearance of glucose from the blood. (14)
Gymnema Sylvestre:
Formulations that include Gymnemic Acids have been used as a useful tool in the fight against obesity. The proposed method of action is through its ability to delay glucose absorption in the blood, thus blocking the over secretion of insulin which may under normal circumstances dump glucose into adipose tissue. (5, 16) Gymnemic Acids have a very similar structure to that of glucose which enables them to compete for the same receptor locations in the intestine, effectively delaying the absorption of glucose into the blood. Gymnema is also particularly useful at curbing sugar cravings due to its ability to fill taste receptors on the tongue, thereby preventing the action of sugar molecules attempting to stimulate the same receptors. (16)
Other mechanisms by which Gymnema is proposed to work include increasing the secretion of insulin, promoting regeneration of islet cells, and increasing the utilization of glucose. (5, 16)
Alpha Lipoic Acid:
Alpha Lipoic Acid (ALA) is a mitochondrial compound heavily involved in energy metabolism. It has various benefits across a myriad of biological processes, including but not limited to neuroprotection, cholinergic transmission, dopaminergic transmission, cholesterol transport, and energy expenditure. (8, 15) It also has a range of benefits pertaining to glucose uptake and AMPK activation, outlining a similar method of action to Berberine. In the murine model, Alpha Lipoic Acid is able to significantly mediate gene expression key rate limiting enzymes involved in glucose metabolism, which is able to increase the rate of glycogen production in the liver. (8, 11, 15, 17)
Na-R-ALA:
Na-R-ALA is the sodium version of the R isomer for Alpha Lipoic Acid which is the most stable and bioavailable form of ALA currently available. It works through the same mechanisms as Alpha Lipoic Acid, but on a much larger scale. Na-R-ALA is most commonly known for its ability to produce dramatic muscle pumps, resulting from increased glucose uptake in skeletal muscle.
Saffron:
Saffron is one of the most underrated glucose disposal agents currently available. It works via multiple methods to directly influence glucose uptake and insulin sensitivity in muscle cells, promoting muscle pumps, and improved blood glucose clearance on an unprecedented scale. (6, 9) It strongly increases cell insulin sensitivity through insulin dependent and non-insulin dependent pathways, and has a major role in promoting Glut-4 transport through AMPK activation. (6, 9)
Glucose transport into skeletal muscle is regulated by 2 distinct pathways. One of which is AMPK and the other is PI 3-Kinase. (2, 6, 9) The P 3-Kinase pathways include activation of Akt, which promotes glycogen synthesis and activation of key enzymes responsible for Glut-4 translocation. AMPK on the other hand plays a vital role in glucose and lipid metabolism. Both pathways increase phosphorylation of mitogen-activated kinase (MAPK) which participates in full activation of insulin-stimulated glucose uptake via GLUT-4. Saffron actives both pathways, hence its effectiveness in clearing blood glucose into skeletal muscle and, where too much glucose is shuttled, it is able to facilitate its preference to glycogen storage over adipose tissue storage. (2, 6, 9)
Chromium
Chromium is an essential mineral which regulates insulin in the body and blood glucose, a mineral which roughly 25-50% of the US population is estimated to be deficient in. Because of its role in the regulation of blood sugar, a deficiency of Chromium may result in glucose intolerance, fatigue, and anxiety. (20) Chromium supplementation may also assist in the reduction of snacking behavior and binge eating. (21, 22)
GlycoPhase:
The Most Comprehensive GDA Available
For Dramatic Pumps, Lean Muscle Gains, & Fat Loss!
References
1. Effects of insulin on lipolysis and lipogenesis in adipocytes from genetically obese (ob/ob) mice. (1979). Biochemical Journal, 184(1), pp.107-112.
2. Froesch, E. (1967). The physiology and pharmacology of adipose tissue lipolysis: Its inhibition and implications for the treatment of diabetes. Diabetologia, 3(6), pp.475-487.
3. Insulin Inhibits Lipolysis in Adipocytes via the Evolutionarily Conserved mTORC1-Egr1-ATGL-Mediated Pathway. (2013). Molecular and Cellular Biology, 33(18), pp.3659-3666.
4. National Institutes of Health (NIH). (2018). NIH study shows how insulin stimulates fat cells to take in glucose. [online] Available at: https://www.nih.gov/news-events/news-releases/nih-... [Accessed 17 Apr. 2018].
5. Baskaran, K., Ahamath, B., Shanmugasundaram, K. and Shanmugasundaram, E. (1990). Antidiabetic effect of a leaf extract from Gymnema sylvestre in non-insulin-dependent diabetes mellitus patients. Journal of Ethnopharmacology, 30(3), pp.295-305.
6. Dehghan, F., Hajiaghaalipour, F., Yusof, A., Muniandy, S., Hosseini, S., Heydari, S., Salim, L. and Azarbayjani, M. (2016). Saffron with resistance exercise improves diabetic parameters through the GLUT4/AMPK pathway in-vitro and in-vivo. Scientific Reports, 6(1).
7. Fuangchan, A., Sonthisombat, P., Seubnukarn, T., Chanouan, R., Chotchaisuwat, P., Sirigulsatien, V., Ingkaninan, K., Plianbangchang, P. and Haines, S. (2011). Hypoglycemic effect of bitter melon compared with metformin in newly diagnosed type 2 diabetes patients. Journal of Ethnopharmacology, 134(2), pp.422-428.
8. Golbidi, S., Badran, M. and Laher, I. (2011). Diabetes and Alpha Lipoic Acid. Frontiers in Pharmacology, 2.
9. Kang, C., Lee, H., Jung, E., Seyedian, R., Jo, M., Kim, J., Kim, J. and Kim, E. (2012). Saffron (Crocus sativus L.) increases glucose uptake and insulin sensitivity in muscle cells via multipathway mechanisms. Food Chemistry, 135(4), pp.2350-2358.
10. Kang, S., Kim, C., Jung, H., Kim, E., Song, H. and Lee, J. (2017). Agmatine ameliorates type 2 diabetes induced-Alzheimer's disease-like alterations in high-fat diet-fed mice via reactivation of blunted insulin signalling. Neuropharmacology, 113, pp.467-479.
11. Lee, W., Song, K., Koh, E., Won, J., Kim, H., Park, H., Kim, M., Kim, S., Lee, K. and Park, J. (2005). a-Lipoic acid increases insulin sensitivity by activating AMPK in skeletal muscle. Biochemical and Biophysical Research Communications, 332(3), pp.885-891.
12. Leung, L., Birtwhistle, R., Kotecha, J., Hannah, S. and Cuthbertson, S. (2009). Anti-diabetic and hypoglycaemic effects of Momordica charantia (bitter melon): a mini review. British Journal of Nutrition, 102(12), p.1703.
13. Liu, F., Kim, J., Li, Y., Liu, X., Li, J. and Chen, X. (2001). An Extract of Lagerstroemia speciosa L. Has Insulin-Like Glucose Uptake–Stimulatory and Adipocyte Differentiation–Inhibitory Activities in 3T3-L1 Cells. The Journal of Nutrition, 131(9), pp.2242-2247.
14. Miura, T., Takagi, S. and Ishida, T. (2012). Management of Diabetes and Its Complications with Banaba (Lagerstroemia speciosaL.) and Corosolic Acid. Evidence-Based Complementary and Alternative Medicine, 2012, pp.1-8.
15. Poh, Z. and Goh, K. (2009). A Current Update on the Use of Alpha Lipoic Acid in the Management of Type 2 Diabetes Mellitus. Endocrine, Metabolic & Immune Disorders - Drug Targets, 9(4), pp.392-398.
16. Shanmugasundaram, E., Rajeswari, G., Baskaran, K., Kumar, B., Shanmugasundaram, K. and Ahmath, B. (1990). Use of Gymnema sylvestre leaf extract in the control of blood glucose in insulin-dependent diabetes mellitus. Journal of Ethnopharmacology, 30(3), pp.281-294.
17. Shay, K., Moreau, R., Smith, E., Smith, A. and Hagen, T. (2009). Alpha-lipoic acid as a dietary supplement: Molecular mechanisms and therapeutic potential. Biochimica et Biophysica Acta (BBA) - General Subjects, 1790(10), pp.1149-1160.
18. Taksande, B., Chopde, C., Umekar, M. and Kotagale, N. (2015). Agmatine attenuates hyperactivity and weight loss associated with activity-based anorexia in female rats. Pharmacology Biochemistry and Behavior, 132, pp.136-141.
19. Yin, J., Xing, H. and Ye, J. (2008). Efficacy of berberine in patients with type 2 diabetes mellitus. Metabolism, 57(5), pp.712-717.
20. Anderson, R. (1998). Chromium, Glucose Intolerance and Diabetes. Journal of the American College of Nutrition, 17(6), pp.548-555.
21. Anderson, R., Cheng, N., Bryden, N., Polansky, M., Cheng, N., Chi, J. and Feng, J. (1997). Elevated Intakes of Supplemental Chromium Improve Glucose and Insulin Variables in Individuals With Type 2 Diabetes. Diabetes, 46(11), pp.1786-1791.
22. Trivalent chromium and the diabetes prevention program. (1997). Medical Hypotheses, 49(1), pp.47-49.
23. Mergenthaler, P., Lindauer, U., Dienel, G. and Meisel, A. (2013). Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends in Neurosciences, 36(10), pp.587-597.
Note: Manufacturers continually change product specifications. While we try our best to keep product descriptions up to date, they do not necessarily reflect the latest information available from the manufacturer. We are not responsible for incorrect or outdated product descriptions and/or images.